Robust Face Recognition Measuring 2D Deformations

Anne Jorstad Applied Mathematics & Statistics, and Scientific Computation Candidacy Talk May 8, 2009

Outline

 Face Recognition Background - Current Deformable Models Feature-based methods Optical Flow Methods using dense correspondences A more robust measure of deformation Long range dense correspondences Statistical models of these correspondences and resulting deformations

Problem Statement

 Given a single unknown 2D image of a face, determine the most similar face from a database of known faces.

Background: Image Alignment

- State of the art can reliably detect a small number of corresponding face feature points
- Align images
 - Rotation, translation, scaling
 - Minimize sum of squared distances between individual face point locations and average face point locations

OMRON face points

 Image alignment is assumed preprocessing for all methods to follow

Background: Image Differences

Background: Image Differences

Face Representation Algorithms

First attempts

 Methods that handle images directly

Majority of talk

 Methods that deform input images
 Measure constructed images and deformations

Face Representation Algorithms: First Attempts

- Principal Component Analysis (PCA):
 - Find low dimensional linear subspace that captures the most important variations in the dataset

 First k principal component vectors of V are the "eigenfaces" of the dataset. Linear combinations provide approximations to true images.

Face Representation Algorithms: First Attempts

• Some eigenfaces:

average

face

first two eigenfaces

last two eigenfaces

• A face projected into its eigenbasis:

Face Representation Algorithms: First Attempts

- Linear Discriminant Analysis (LDA):
 - Instead of finding the best subspace representation, find the best classification:
 - Maximize difference between classes *S_B*: between-class covariance matrix
 - Minimize difference within each class *S_W*: within-class covariance matrix

•
$$I_{LDA} = \omega^T I$$
, pick projection ω to maximize $\frac{\omega^T S_B \omega}{\omega^T S_W \omega}$

Problems with Pixels

• Pixel-based methods fail when variations in pose, expression, lighting and occlusions are introduced.

• Want to warp input face to standard expression and pose before calculating the image difference.

Finding Correspondences

How to determine correspondences?

What to do with them once they are found?

Active Appearance Models

- Separate Shape (location) information from Texture (intensity) information:
 - Indentify corresponding feature points in each image
 - Warp points to average locations, interpolate all other points
 - Map texture values respectively for "shape-free patch"

original labeled image

average point locations

shape-free image

Active Appearance Models

• An individual image has shape vector *x* and texture vector *t*, where:

$$x = \bar{x} + Q_s c$$
$$t = \bar{t} + Q_t c$$

Q_s: modes of shape variation

 (PCA over point locations)
 Q_t: modes of texture variation
 (PCA over warped images)
 c: image-specific parameter values

Active Appearance Models

• Iterate model to generate good match to input image

- Residual error at iteration *m*: $r(c_m) = t_0 - t_m$

 t_0 = input image texture

 t_m = current warped model texture

– Update parameters: $c_{m+1} = c_m + \delta c_m$

where δc_m is chosen to minimize $||r(c_m + \delta c_m)||^2$ using the first order Taylor expansion:

 $r(c_m + \delta c_m) = r(c_m) + \frac{\partial r}{\partial c} \delta c$

estimated from training data 15

Automatic Correspondences

- Unreasonable to expect large number of feature point correspondences
- State of the art can reliably detect a small number of face feature points
 - Useful for image alignment
 - Insufficient for warping
- Would like to automatically obtain correspondences

- To find correspondences for comparison
- Fit a uniform grid of nodes over a face, adjusting each node locally to best fit a model.

- Each node = "jet", a vector:
 - Gabor wavelet convolution with the image

 Gabor wavelets are a "good approximation to the sensitivity profiles of neurons found in the visual cortex" of the brain

– 5 scales

• Fit new image jet J^{I} with model jet J^{M} : $\max C_{v}(J^{I}, J^{M}) = \frac{\langle J^{I}, J^{M} \rangle}{\|J^{I}\| \|J^{M}\|}$

Also want to minimize the image distortion
 Distance between nodes:

$$\Delta_{ij} = \vec{x}_j - \vec{x}_i$$

- Overall distortion:

min
$$C_e(\Delta_{ij}^I, \Delta_{ij}^M) = \left(\Delta_{ij}^I - \Delta_{ij}^M\right)^2$$

• Total cost to be minimized:

$$C(x_i^I) = \lambda \sum_{(i,j)\in E} C_e(\Delta_{ij}^I, \Delta_{ij}^M) - \sum_{i\in V} C_v(J^I(x_i^I), J_i^M)$$

distortion penalty constant

minimize distortions

maximize node match similarity

Optimize via simulated annealing
 – Randomly shift the nodes

Pictorial Structures

- Learn cost function for deformations specific to faces, depends on:
 - Local image similarity
 Amount of deformation required to arrive at this similarity

 Consider connections between few higher level "parts"

Unlike other algorithms, this method is only for face *detection*

Pictorial Structures

"Part"

 27-D vector
 Gaussian derivative filters
 Varies order, orientation and scale

 Learn what parts look like from labeled training examples

Pictorial Structures

• Best match of new image to model:

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i \in V} m_i(\ell_i) + \sum_{(i,j) \in E} d_{ij}(\ell_i, \ell_j) \right)$$

mismatch to model when part v_i is placed at location l_i deformation of the model between parts v_i and v_j (Mahalanobis correlation distance)

Method detects faces

Not discriminative enough for identification

Dense Correspondences

 Match every point in new face to some point in known face

Dense Correspondences

- Match every point in new face to some point in known face.
- Optical flow
 - Determine the displacement of every pixel in the first image to the most similar pixel in the second
 - Return [*u*, *v*] vector for each point
 - Vector field over the image
 - Assume images are similar
 - Assume intensity is preserved between corresponding patches

- Intensity constraint equation: $I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t)$
- Taylor series:

 $I(x + \delta x, y + \delta y, t + \delta t) = I(x, y, t) + \frac{\partial I}{\partial x} \delta x + \frac{\partial I}{\partial y} \delta y + \frac{\partial I}{\partial t} \delta t$ $0 = \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \frac{\partial I}{\partial t}.$

Optical flow values to be returned

 $\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}, \frac{\partial I}{\partial t}$ calculated using finite differences of pixels

• Optical Flow equation: $\nabla I \cdot \vec{v} + I_t = 0$

Let $E_b = \nabla I \cdot \vec{v} + I_t$

• Need second constraint to explicitly solve for *u*, *v*

- Horn and Schunk
 - Enforce smoothness by minimizing gradient of flow:

$$E_c^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2$$

– To solve:
$$\min \int \int \left(E_b^2 + \lambda E_c^2
ight) dx dy$$

Problems at motion boundaries

First two frames in video sequence

Least squares estimate of horizontal flow (Horn and Schunk)

Robust gradient estimate of horizontal flow (Black and Anandan)

- Black and Anandan
 - Robust Statistics
 - Exclude outliers to handle object boundaries
 - Incorporate robust ρ-function (error) and its derivative ψ (proportional to the influence function)

$$\min \int \int \left(\rho_b(E_b^2) + \lambda \rho_c(E_c^2) \right) dx dy$$

function to limit influence of outliers

 ψ -function = derivative of ρ (proportional to the influence function) Methods Using Dense Correspondences

 Use optical flow to obtain corresponding pixel for every point in an image.

Warping A Single Image

• Use prior knowledge of face pose change to warp a single known image to a new artificial image.

Warping A Single Image

- Algorithm to build database:
 - Have single image of most people
 - Find correspondence between new face and known face
 - Provide key features by hand, interpolate for other points
 - Similar to Active Appearance Models
 - Apply known transformations to generate many virtual views
 - Optical Flow at each point

Warping A Single Image

- Testing:
 - Compare new image to most similar pose of every individual in database
 - Nearest neighbor wins

3D Morphable Model

- A "state of the Art" method solving the correspondence lacksquareproblem under pose and lighting variation
- Statistical 3D model instead of several 2D images

PCA on 3D vector describing how a specific point differs from model average of that point

PCA on intensity value at each point

adjusting 1st component

2nd principal component

3D Morphable Model

- *m* significant eigenvectors define variation of shape *S* and texture *T*
- Influence of each dimension on a particular face defined by coefficient vectors α and β

$$s = \bar{s} + \sum_{i=1}^{m-1} \alpha_i S_i$$
$$t = \bar{t} + \sum_{i=1}^{m-1} \beta_i T_i$$

- Construct synthetic image to closely match unknown face image
 - Minimize sum of squared distances between real and synthetic pixel intensities

3D Morphable Model

Construct model to match image:

 a posteriori estimate via Bayes:
 max P (α, β, ρ|I_{in}, F) ~ max P(I_{in}, F|α, β, ρ) · P(α, β, ρ)

 $lpha = ext{shape control parameters}$ $eta = ext{texture control parameters}$ $ho = ext{pose control parameters}$ $I_{in} = ext{new image}$ $F = ext{small set of feature points}$ found during preprocessing

Match constructed model to known person:
 – Compare model coefficients

Examine the Optical Flow

- Martinez: Weight importance of pixels by how much they deform
 - Small change: important for recognition
 - Large change: ignore

A. Martinez. "Recognizing Expression Variant Faces from a Single Sample Image per Class." IEEE Computer Vision and Pattern Recognition (CVPR), 2003.

Examine the Optical Flow

• Weighting scheme – Compare new image *T* to known images I_n $F_n = OpticalFlow(I_n, T)$ $W_{n,i} = \max_i ||F_{n,i}|| - ||F_{n,i}||$ (weight for each pixel *i*) $C_n = ||W_n(I_n - T)||$ (cost to match *T* to I_n)

Limitations of Current Approaches

- Methods using dense correspondences only measure resulting image similarity
- Optical flow meant to solve the small motion correspondence problem
 - No reason to expect it to work for large pose or expression changes
- Need statistical models of deformation change due to expression/pose of same person vs change in identity

- A successful face recognition system should consider:
 - Similarity between images
 - Amount and type of deformation required to achieve this similarity

Similarity between images *I* and *J* Let *v* be a transformation defined on every pixel of *I* such that *v*(*I*) ≈ *J*

– For each pixel x in J, the corresponding pixel in I is $I(v^{-1}(x))$

• Similarity between images *I* and *J*, for all points *x*:

 $d(I(x), J(x)) = \|J(x) - I(v^{-1}(x))\|_2 + \lambda \|v(x)\|_g$

deformed image intensity difference

measure of deformation

- To define:
 - Deformation *v*
 - Deformation norm g
 - Relative weighting λ

- Deformation *v*:
 - Traditional optical flow
 - Longer range dense correspondence
- Deformation norm *g*:
 - Optical flow: any metric defined on a vector field, $\sum ||v_i||_2$, ...
 - New field?
- Relative weighting λ :
 - Implicit using Machine Learning techniques
 - Learn from training set
 - Incorporate into g

Previous methods

 Dynamic Link Matching

$$C(x_i^I) = \lambda \sum_{(i,j)\in E} C_e(\Delta_{ij}^I, \Delta_{ij}^M) - \sum_{i\in V} C_v(J^I(x_i^I), J_i^M)$$

minimize distortions

maximize node match similarity

- Pictorial Structures

$$L^* = \underset{L}{\operatorname{argmin}} \left(\sum_{i \in V} m_i(\ell_i) + \sum_{(i,j) \in E} d_{ij}(\ell_i, \ell_j) \right)$$

part-to-model mismatch

model deformation

Optical Flow Limitations

 Optical flow meant to solve small motion correspondence problem

 Correspondence between faces involves different set of requirements

 Alternative method meant to handle larger changes:
 Deformations through Lie group action

Deformations Through Lie Group Action

Image: continuous Riemannian manifold

Lie group: diffeomorphisms of the manifold
 The possible image deformations

 Lie algebra: vector space of infinitesimal steps in the direction of these deformations
 – Continuous vector fields deforming the image

• Geodesic: the deformation requiring the least energy (v)

Deformations Through Lie Group Action

• Energy
$$E = \min_{v} \left(\int_{0}^{1} \left\| \frac{\partial I}{\partial t} \right\|_{2}^{2} dt + \int_{0}^{1} \left\| v_{t} \right\|_{g}^{2} dt \right)$$

 A geodesic obtained by minimizing the energy between two given images:

Future Research

- Define robust long range dense correspondences between images.
- Build statistical models of these correspondences and resulting deformations.
- Solve image classification problems using this information.